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Abstract

This paper addresses the problem of compensating for lateral chromatic aberration
in digital images through colour plane realignment. Two main contributions are
made: the derivation of a model for lateral chromatic aberration in images, and the
subsequent calibration of this model from a single view of a chess pattern. These
advances lead to a practical and accurate alternative for the compensation of lat-
eral chromatic aberrations. Experimental results validate the proposed models and
calibration algorithm. The effects of colour channel correlations resulting from the
camera colour filter array interpolation is examined and found to have a negligible
magnitude relative to the chromatic aberration. Results with real data show how
the removal of lateral chromatic aberration significantly improves the colour quality
of the image.
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1 Introduction

An optical instrument is required to faithfully produce a geometrically con-
sistent image of a given object, where each point of the latter is imaged as
a point in the image. The departure of practical optical systems from this
ideal (gaussian or first order) behaviour is due to aberrations. In general it is
impossible to design a system which is free from all aberrations. This leads
lens manufacturers to consider aberration compensation as an optimisation
between different types. We are interested in chromatic aberrations that have
recently become more amplified due to the higher resolution sensors currently
employed in many consumer and scientific cameras. By compensating for these
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aberrations as a post process in the image array, higher quality images can be
produced without recourse to expensive optics.

In a colour camera’s lens, polychromatic light is split into a set of rays or wave-
lengths. Whilst traversing the optical system light of different wavelengths will
follow slightly different paths. Upon reaching the image plane their misaligned
recombination introduces chromatic aberration. Chromatic Aberration (CA)
can be broadly classified as Axial Chromatic Aberration (ACA) (also known
as Longitudinal CA) and Lateral Chromatic Aberration (LCA) (also known as
Transverse CA). ACA arises from the longitudinal variation of focal position
with wavelength along the optical axis. LCA is the variation of image size with
wavelength or the vertical off-axis distance of a point from its prescribed point.
In an image it is identified by a radially dependent misalignment of the colour
planes. Chromatic aberrations are moving out of the sub-pixel range with
the advent of high resolution arrays, giving rise to noticeable colour fringes
at edges and high contrast areas. This gives the overall impression of poor
quality or definition. Many consumer cameras display this aberration. For sci-
entific applications, it is akin to the effects of colour shifts and blurring, that
contravene the imaging models. We consider the digital compensation of LCA
through image warping. There are two main aspects of digital compensation
in images: determining what quantity of warp to apply, and the actual imple-
mentation of the warp. Our main contribution deals with the former problem,
which has currently not been addressed, by considering the modelling and
model calibration of LCA in images.

Chromatic aberration has been predominately studied with respect to image
formation in the areas of microscopy, photogrammetry and computer vision,
though recent advances in digital imaging has seen the emergence of commer-
cial interest. Willson (1994) and Willson and Shafer (1991) considers an active
lens control system to compensate for both LCA and ACA, by separately ad-
justing three RGB filter lenses to match the colour planes. Their work shows
that chromatic aberrations can be compensated in an image by re-alignments
of the colour channels. Boult (1992) formulates the compensation of LCA as an
image warping problem. No aberration models are employed, focusing solely
on the warping problem, and correcting based only on interpolation between
control points. Jackowski et al. (1997) presents a similar study on geometric
and colour correction in images based on a comparison with a well defined
colour calibration chart. The models used are again surface approximations,
which are far from optimal solutions, especially since only a limited number
of control points are available to estimate the surface parameters. An algo-
rithm for the measurement and compensation of both LCA and ACA has been
proposed for fluorescence microscopy by Kuzubek and Matula (2000), and for
electron microscopes by Freitag et al. (2005). These techniques are not trans-
ferrable to images acquired with regular imaging systems. With the goal of
developing an auto-focus or depth indicator, Garcia et al. (2000) measure the
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blurring resulting from ACA on different colour planes around step edges.

Our proposed compensation is achieved by realigning the colour planes through
image warping. Firstly, an LCA model is derived to precisely model the aber-
ration over the entire image surface. This offers a more precise and concise
means of extending the aberration, measured over a limited set of control
points, to every pixel in the colour plane. LCA is initially measured by ex-
tracting the intersections of a chessboard pattern on each colour plane. No
special planarity constraints or canonical representation of the pattern is re-
quired. It can be imaged without knowing its 3D position. Additionally, many
of the target images are likely to be acquired with conventional digital cam-
eras. These images are typically captured using a colour filter array, who’s
measurements are then interpolated to form the full colour image. Thus, we
investigate if there is significant correlation between individual colour channels
resulting from the interpolation process that may lead to additional chromatic
distortion in regions of high chromatic content.

The measurement errors are filtered by non-linear least square fitting of the
proposed LCA model. The partial derivatives of the quadratic cost functions
are given allowing the exact computation of the gradients and Hessian ma-
trices used by the optimisation algorithms. This gives a computational ad-
vantage over numerical estimation techniques. The suitability and stability of
the model is examined by computing the uncertainties associated with the
estimated parameters. The detailed results clearly demonstrate the successful
compensation of LCA for real scenes.

2 Geometrical Theory of Aberrations

Optically, aberrations are compensated for by adding lens elements with ap-
propriate properties. Chromatic aberration is typically eliminated for two se-
lected wavelengths, but only at the center and some zonal region. These lenses
are known as achromatised. Lenses corrected for three different wavelengths
are known as apochromatic while superachromatic lenses are corrected for
four wavelengths. We are interested in the remaining chromatic aberrations,
known as the secondary spectrum. No distinctions are made between types
of corrected lenses, as the derived models are generally applicable. Lateral
chromatic aberration can be considered as the sum of two aberrations: lateral
colour distortion due to the refraction index of the lens elements and the chro-
matic variation of distortion (Kingslake, 1978). We proceed by determining an
appropriate model for the chromatic variation of distortion in the image plane.
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2.1 Chromatic variation of distortion

On the image plane, ideal image points are denoted in Euclidian space as
p = [x, y]T while actual points are p̆ = [x̆, y̆]T . Within the accuracy of gaus-
sian optics or perfect projection p = p̆. Referring to figure 1, ξ and η are x,
y measurements in the plane of the aperture. As a consequence of the pre-
ceding optics, a wave other than the prescribed gaussian one is formed. This
wave aberration can be expressed in polynomial form, derived from Seidel
perturbation eikonals (Born and Wolf, 1980; Driscoll, 1978). In a general sys-

Fig. 1. General optical setup.

tem containing a number of refracting surfaces, the primary aberrations equal
the sum of the corresponding aberration coefficients associated with the in-
dividual surfaces of the system. By this reasoning, aberrations are optically
compensated for by the addition of appropriate lens elements. If decentering
or misalignments of the surfaces is considered, subsequent image deforma-
tion may be approximated by perturbing the intermediately formed image by
x1 → x1 + λ and y1 → y1 + µ. Considering the distortion component of the
wave aberration equation, the corresponding wave aberration for the combined
surfaces to a fourth order approximation is:

φ = k1r
2κ2 + λk1(ξ(3x

2 + y2) + 2ηxy) + µk1(η(3y2
u + x2

u) + 2ξxuyu),

where r2 = x2 + y2 and κ2 = xξ + yη. The constant k1 = E1 + ...En is the sum
of the individual lens contributions. The combined decentering effects of mul-
tiple lens elements also sums in a linear fashion. The altered wavefront is the
root of all aberrations formed on the image by distorting the ray projections.
These ray aberrations are evaluated as the shift from the predicted gaussian
coordinates by ∆x = x − x̆ = ∂φ

∂ξ
and ∆y = y − y̆ = ∂φ

∂η
(Born and Wolf,

1980). Evaluating this using the fourth order approximation of φ, results in
the combined cartesian model of distortion.
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CD(p,k)x = k1xr2 + p1(3x
2 + y2) + 2p2xy

CD(p,k)y = k1yr2 + 2p1xy + p2(3y
2 + x2), (1)

where k = [k1, p1, p2]
T are the parameters, p1 = λk1 and p2 = µk1. In this

function the radial component is represented by k1, while the distortions in-
troduced by decentering correspond to p1 and p2. This decentering model is
equivalent to that of Conrady (1919) as promoted by Brown (1966), found
through exact ray tracing techniques. In many lenses a secondary chromatic
spectrum exhibits a decentering form. Its inclusion leads to a more general
model and improved modelling accuracy. This is investigated further in sec-
tion 4.

2.2 Lateral colour distortion

In addition to the chromatic variation of distortion there is an additional
lateral colour distortion that is due to the refraction index variation of the
lens elements. The refraction index is quite linear within the visible spectrum
Kingslake (1978), resulting in the addition of an extra first order term that
does not appear in the chromatic distortion equation. Deviations from linear
behaviour are naturally accounted for in the chromatic distortion equation.
Thus, the combined LCA for a specific frequency (g), can thus be modelled as
a function of another frequency (f) by the addition of the chromatic variation
of distortion and the lateral colour distortion as:

Cg(pf , cg)x = c1xf + c2xfr
2
f + c3(3x

2
f + y2

f ) + 2c4xfyf

Cg(pf , cg)y = c1yf + c2yfr
2
f + 2c3xfyf + c4(3y

2
f + x2

f ), (2)

where cf = (c1, c2, c3, c4)
T is the parameter vector.

3 Model Calibration

Lateral chromatic aberration is modelled for a specific frequency according
to equation 2. The actual secondary spectrum is difficult to exactly quantify,
but manifests itself by misalignments in the colour planes as demonstrated
by Willson (1994). The colour cameras used in these earlier works typically
consisted of beam splitters with three RGB CCD elements. With the current
standard digital technology, an image is formed with one CCD using a Colour
Filter Array (CFA), such as the popular Bayar array. Thus, for each location in
the image, two colours must be interpolated from the neighboring locations.
This interpolation process is also referred to a demosaicking, see Popescu
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and Farid (2005); Ramanath et al. (2002) for an overview of methods. Due
to this interpolation, it is quite possible that correlation may be introduced
between separate colour planes, indeed many demosaicking methods explicitly
use additional separate colours to improve their results. However, if the colours
are not properly aligned (due to chromatic aberration) this can lead to more
colour distortion being introduced, depending on the chromatic content of the
light ray. The extent of this correlation is investigated in section 4.

The RGB colour space is used in this work, due to its direct correspondence
with wavelength. The chromatic aberration is compensated for by re-aligning
two of the colour planes with the third reference plane. This reference plane
is chosen as the green plane, which corresponds to the midpoint of the visible
spectrum. It is also used in demosaicking methods as a reference or luminance
channel.

3.1 Measuring lateral chromatic aberrations

Chromatic aberration has previously been measured by Kuzubek and Matula
(2000) using florescent dyed beads. These are then imaged in 3D, when their
centroids are estimated. From these centroids the LCA and ACA are measured.
This approach is only suited to fluorescent microcopy, but the measured LCA
exhibits a similar profile to the results obtained using our approach. Willson
Willson (1994), measures chromatic aberration by comparing the location of
edges detected on three colour planes. In this paper lateral chromatic aber-
ration is measured by detecting the intersections of a chessboard pattern for
each of the colour planes. These are automatically extracted by a two stage
process of initial detection and sub-pixel refinement.

Initial estimates for the location of chessboard type intersection are obtained
using standard corner detectors such as those described in Lucchese and Mi-
tra (2002); Jain et al. (1995). For real situations where additional corners are
detected, a further refinement step is necessary to remove false hits. A small
N ×N region of interest, Ψ, centered on the candidate corner is first thresh-
olded using the mean gray level of Ψ. A symmetry measure tΨ can then be
calculated as:

tΨ =
N∑

v=0

N∑

u=0

O(u, v), where O(u, v) =





a if
Ψ(u, v) = Ψ(N − u, N − v)

Ψ(u, v) 6= Ψ(u,N − v)
,

b otherwise.

where (u, v) are the pixel coordinates, a and b are positive and negative con-
stants. We obtain good performance using a = 6 and b = −1 with N = 9.
High values of the symmetry measure tΨ indicate the corner is situated on a
chessboard intersection.
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For each colour plane the initial corner estimate is refined using a small N×N
region of interest Ψ. A bilinear quadratic function is linearly fit to the intensity
profile:

min
s
‖s1u

2 + s2uv + s3v
2 + s4u + s5v + s6 −Ψ(u, v)‖2.

The intersection point or saddle point is derived from this surface as the
intersection of the two lines 2s1u + s2v + s4 = 0 and s2u + 2s3v + s5 = 0. No
special data ordering is necessary as comparisons are not made to external
coordinate system. The accuracy of this detection method is examined in
section 4.

3.2 Chromatic parameter estimation

The pattern intersection points are represented in pixel coordinates as mf =
(uf , vf )

T for a certain colour plane f . Given the image width and height
as w and h, the intersection coordinates are normalised by scaling m̄f =
(uf , vf )

T /s = (ūf , v̄f )
T , where s = (w + h)/2. The normalised optical axis or

center point of the apparent aberration, (ẋf , ẏf )
T , also needs to be estimated,

as it generally does not lie at the center of the image. It is initially estimated
as ẋf = −w/2s and ẏf = −h/2s. For some cases an aspect difference (a) also
needs to be estimated. Fully scaled points on a certain colour plane are thus
denoted by:

pf = (xf , yf )
T = (aūf + ẋf , v̄f + ẏf )

T ,

where f denotes the colour plane, in this case either red (r), blue (b) or green
(g).

The lateral misalignments between the red and green planes is modelled as a
function of the green plane, following equation 2 as:



Cr(pg, cr)x

Cr(pg, cr)y


 =




c1xg + c2xgr
2
g + c3(3x

2
g + y2

g) + 2c4xgyg

c1yg + c2ygr
2
g + 2c3xgyg + c4(3y

2
g + x2

g)


 , (3)

and similarly for the difference between the blue and green planes. For each
detected intersection point, two equations are formed. It is sufficient to follow
these equations with respect to the red/green planes only:

e(θ̂r) =




ex(θ̂r)

ey(θ̂r)


 =




ūg + Cr(pg, cr)x − ūr

v̄g + Cr(pg, cr)y − v̄r


 , (4)

where the parameter vector to be estimated is θ̂r = (ẋ, ẏ, a, c1, c2, c3, c4).

This function is minimised using a quadratic cost function j(θ) = eT (θ)Qe(θ),
where Q is the estimated covariance, (assumed an identity matrix in this case).
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Performing a first order expansion of the error e around the last iterative
estimate θ̂k, results in a Gauss-Newton scheme that can be iterated utilising
many robust least square techniques Golub and Loan (1996):

θ̂k+1 = θ̂k − λ

(
∂eT (θ̂k)

∂θ

∂e(θ̂k)

∂θT

)−1
∂eT (θ̂k)

∂θ
e(θ̂k), (5)

where λ ≤ 1 ensures a decrease in cost at each step. The partial derivatives
used in the closed-form calculation are given as:

∂e(θ̂k)

∂θT
=




∂ex(θ̂k)
∂θT

∂ey(θ̂k)
∂θT


 =




∂ex(θ̂k)
∂ẋ

, ∂ex(θ̂k)
∂ẏ

, ∂ex(θ̂k)
∂a

, xg, xgr
2
g , 3x

2
g + y2

g , 2xgyg

∂ey(θ̂k)
∂ẋ

, ∂ey(θ̂k)
∂ẏ

, ∂ey(θ̂k)
∂a

, yg, ygr
2
g , 2xgyg, 3y

2
g + x2

g


 ,

with 


∂ex(θ̂k)
∂ẋ

∂ey(θ̂k)
∂ẋ


 =




c1 + c2(3x
2
g + y2

g) + 6c3xg + 2c4yg

2c2xgyg + 2c3yg + 2c4xg


 ,




∂ex(θ̂k)
∂ẏ

∂ey(θ̂k)
∂ẏ


 =




2c2xgyg + 2c3yg + 2c4xg

c1 + c2(x
2
g + 3y2

g) + 2c3xg + 6c4yg


 ,




∂ex(θ̂k)
∂a

∂ey(θ̂k)
∂a


 =




c1ug + 3c2x
2
gug + 6c3xgug + 2c4ugyg

2c3ygug + 2c4xgug


 .

Equation 5 is iterated until θ̂k+1−θ̂k falls below a preset threshold. The param-
eter vector can be simply initialised as θ0

r = (−w/2s,−h/2s, 1, 0, 0, 0, 0), while
the estimation algorithm generally converges within ten iterations. The esti-
mated parameter uncertainties can be estimated using the Fisher information
matrix:

F(θ̂) =
1

σ̂2

n∑

i=1

∂eT (θ̂k)

∂θ̂

∂e(θ̂k)

∂θ̂T
, (6)

where σ̂2 = 1
n−m

∑n
i=1 e(θ̂k)2. F−1(θ̂) is then used to characterise the uncer-

tainty in the parameters, by forming an estimate of the associated Standard
Deviation (SD) as the square root of the ith diagonal element as:

SD(Φ̂i) =
√

diagi(F
−1(θ̂) (7)

4 Experiments

This section describes the experiments and results obtained relating to the
measurement of LCA and its colour channel correlations in digital cameras.
The integrity or stability of the estimated model parameters are also studied.

8



Table 1
Description of the cameras used for the experiments

Make and Model Focal Resolution CFA

Cam 1 Nikon E4500 7.8mm 2272× 1704 CYGM

Cam 2 Fuji FinePix 6900 7.8mm 2832× 2128 RGB

Cam 3 Fuji FinePix 6900 + WL-FX9 6.2mm 2832× 2128 RGB

Finally, the effects of LCA compensation in real images of controlled (calibra-
tion charts) and natural scenes are quantified and illustrated. Three different
digital cameras are used in the experiments. Their properties are outlined in
table 1.

4.1 Measurement precision

As outlined in Section 3.1, chessboard patterns are used to measure the content
of LCA in images. The pattern used for calibration is shown in figure 2. No
canonical coordinates are required for calibration, hence no precise constraints
are needed on the planarity or precision of the pattern. A second lower density
chessboard pattern (test image), shown in figure 2, is used for independent
validation of the results.

The typical sub-pixel detection accuracy of the techniques outlined in section
3.1 are illustrated in figure 3 for the three cameras used in the experiments.
Following extraction of the intersection locations on each colour plane of a
black and white calibration chart the misalignments are calculated. These
misalignments, representing the amount of LCA in the images, are presented
in table 2 for the two types of chessboard patterns considered.

Fig. 2. Chessboard patterns used for calibration (calib image) and testing (test
image) taken with cam 1, see tables 2 and 4.
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Fig. 3. Histogram of sub-pixel detection errors for three different cameras with
their fitting with Rayleigh PDF. Errors are estimated using multiple shots of the
calibration pattern.

Table 2
Colour plane misalignments (in pixels) before calibration in mean (standard de-
viation) format for three different cameras. R/G and B/G are the red and blue
misalignments with reference to the green channel.

Cam 1 Cam 2 Cam 3

Calib R/G 0.5707 (0.2113) 0.5496 (0.2308) 1.1834 (0.4125)

Image B/G 0.4110 (0.2635) 0.7374 (0.6361) 0.5665 (0.3848)

Test R/G 0.5355 (0.2225) 0.5413 (0.2035) 0.9729 (0.2866)

Image B/G 0.4877 (0.2925) 1.1630 (0.8971) 0.8378 (0.7956)

4.2 Colour plane correlations

As outlined in section 3, the interpolation process of the CFA in digital cameras
may introduce additional correlations between colour channels. This has the
potential to impact on the compensation for LCA by introducing additional
colour dependent shifting. For example, assume there is a high correlation be-
tween the green channel and the blue channel due to the interpolation process.
Thus, for a location in the blue channel, the observed LCA varies depending on
the level of green. This would mean that the calibrated LCA model would only
be applicable to colours similar to those that were used during calibration.

In order to investigate this idea, a set of experiments were designed. These
consisted of comparing the location of a full spectrum (black and white) chess-
board to that of a partially filtered one (coloured). The movement of the chess-
board locations due to the removal of certain frequencies reveals the impact of
the interpolation process. The experimental setup consists of a fixed camera
and target with a white light source. This light is then filtered with colour
filters to remove certain frequencies. The filters chosen are cyan, magenta and
yellow, which block out, in turn, the red, green and blue frequencies. This
configuration of filters is chosen as opposed to a RGB filtering scheme, as
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Table 3
Colour plane correlations in mean (SD) format. Gf , Rf and Bf are the measurement
taken with certain colour removed by filtering.

Filter Cam 1 Cam 2 Cam 3

Cyan
G/Gf 0.0883 (0.0446) 0.0984 (0.0469) 0.0949 (0.0459)

B/Bf 0.1443 (0.0726) 0.1982 (0.1141) 0.2406 (0.1437)

Magenta
R/Rf 0.0966 (0.0516) 0.2142 (0.0767) 0.2366 (0.0728)

B/Bf 0.2256 (0.1246) 0.2949 (0.1646) 0.3588 (0.2020)

Yellow
R/Rf 0.1490 (0.0534) 0.1386 (0.0618) 0.1302 (0.0662)

G/Gf 0.0550 (0.0323) 0.1506 (0.0482) 0.0887 (0.0428)

we consider that LCA only visibly manifests itself with reference to another
colour, and is thus most appropriate.

The results of these experiments are presented in table 3. These show that
the correlations due to the lack of blue and red are around the level of the
detection accuracy. The vector plots of these differences reveal no discernable
chromatic like dependence. The differences due to the absence of green are
slightly larger, while their vector plots reveal a small (in comparison to the
measured LCA in table 2) chromatic like dependence. We conclude that the
interpolation does induce an additional chromatic error, but to a negligible
degree with regard to the available measurement accuracy and the LCA con-
tent. Therefore, considering the relative magnitudes, it can be expected that
the LCA calibrated using a black and white pattern will be applicable to any
colour. This is borne out in the experiments with natural scenes in section
4.3. The varying correlations of different interpolation methods is beyond the
scope of this paper.

4.3 Chromatic compensation

Following calibration using a black and white calibration chart, the known
LCA models are used to warp the colour planes so as to register the red and
blue colour planes with the green channel. The Euclidean registration residu-
als remaining following this re-registration are presented in table 4, showing
a significant decrease in misalignments. These residuals are of a similar mag-
nitude to the sub-pixel detection accuracy, thus validating both the proposed
LCA model and the effectiveness of the proposed calibration algorithm.

As described in section 2, some lenses exhibit a significant tangential LCA
component. The results presented in table 5 show the Euclidean registration
residuals following compensation based on a model without tangential ele-
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Table 4
Colour plane misalignments (in pixels) following calibration and colour plane warp-
ing in mean (standard deviation) format for three different cameras.

Cam 1 Cam 2 Cam 3

Calib R/G 0.1202 (0.0636) 0.1401 (0.0733) 0.1846 (0.0722)

Image B/G 0.1376 (0.0734) 0.1658 (0.0947) 0.1543 (0.0925)

Test R/G 0.1788 (0.1062) 0.1625 (0.0784) 0.2044 (0.1149)

Image B/G 0.1879 (0.1110) 0.3092 (0.2146) 0.3202 (0.2419)

Table 5
Colour plane misalignments (in pixels) following calibration and warping using a
model without tangential elements in mean (standard deviation) format for three
different cameras.

Cam 1 Cam 2 Cam 3

Calib R/G 0.1828 (0.0904) 0.1615 (0.0858) 0.2196 (0.1208)

Image B/G 0.2131 (0.1117) 0.1805 (0.1087) 0.1507 (0.0754)

Test R/G 0.1864 (0.1110) 0.2022 (0.1019) 0.1886 (0.1449)

Image B/G 0.2071 (0.1334) 0.3670 (0.3070) 0.3761 (0.3029)

ments. The increase in these residuals compared with those of the full calibra-
tion model indicate that although radial chromatic aberration is predominant,
there is a varying element of tangential aberration based on the lens employed.
The inclusion of tangential elements in the LCA description gives a more gen-
eral and accurate model of lateral chromatic aberration in an image.

Full details of the colour plane misalignments before and after calibration
are presented for one example (Cam 1) from table 2 and 4. Figure 4 shows
the distribution of colour plane misalignments before and after compensation
for LCA for the calibration pattern in figure 2. The corresponding Euclidean
vector representation of these misalignments for the test image, before and
after compensation, are illustrated in figure 5. These show that the remaining
misalignments are random in nature (with magnitude similar to the detection
noise), indicating the successful modelling and compensation of LCA.

To assess the improvement in image quality a selection of examples are shown
for each camera referred to in tables 2 and 4. For each camera a region of
interest (ROI) is selected in the test image and an outdoor scene image. Images
taken with Cam 1 are presented in figures 6 and 7, Cam 2 in figures 8 and
9, while Cam 3 examples are presented in figures 10 and 11. The associated
colour histograms for the test ROI’s of figures 6, 8 and 10 show that for the
uncorrected image, two colour paths exist between the black and white squares
of the test pattern. This is due to the additional colour fringing introduced
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by the LCA around regions of high contrast. The colour histograms for the
corrected images show that following compensation there is only one colour
path between dark and bright squares, indicating the successful removal of
LCA from these images. The real examples of figures 7, 9 and 11 show a similar
behaviour. Additional colour paths can be seen in the original images, while
following calibration and compensation these extra colors are removed. These
results clearly indicate that the proposed method of automatically calibrating
and removing LCA in images leads to a significant increase in image quality.

4.4 Model parameter analysis

To determine the suitability of the model, in terms of redundant parameters,
and its stability, it is useful to look at the parameter uncertainties. These
measures may be computed directly from the iterative estimation scheme as
described in equation 7. In order to concisely describe these results two ex-
treme examples are taken from the calibration data in section 4.3. These are
the red/green alignments in Cam 1 and Cam 3. The parameter values and
uncertainties are presented in table 6. The parameter c1, related to the lateral
colour distortion, takes a large role in the calibration in Cam 1. However, in
all estimations its estimated uncertainty value remains low indicating a stable
system of equations. Parameter c2, related to the chromatic variation of dis-
tortion proves useful for all calibrations and also exhibits low uncertainties.
The decentering parameters c3 and c4 play a variable role, clearly related to
the camera or lens employed. The centre point estimates and uncertainties are
presented for completeness.

Table 6
Parameter values and uncertainties for the selection of reg/green calibration with
Cam 1 and Cam 3

Parameter Cam 1 Cam 3

c1 ×10−3 82.730 (0.0094) 2.021 (0.0152)

c2 ×10−3 -11.164 (0.0142) -4.970 (0.1023)

c3 ×10−4 -0.0693 (0.0252) 2.188 (0.0633)

c4 ×10−4 -0.0716 (0.0349) 1.111 (0.0891)

uo 1163 (5.33) 1335 (4.13)

vo 903 (5.38) 1074 (4.18)
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Fig. 4. Histograms of Euclidean misalignments computed for chessboard intersec-
tions on the calibration image with Cam 1. Left column shows the R/G and B/G
differences before compensation, while the right column shows those detected fol-
lowing calibration with fitted Rayleigh PDF’s.
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Fig. 5. Euclidean vector plots of colour plane misalignments before (left column) and
after (right column) LCA compensation, evaluated on the test chessboard pattern
with Cam 1.
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5 Conclusion

This paper proposes a new model based method of compensating for lateral
chromatic aberration in images, offering a usable alternative to active lens
control techniques and data interpolation methods. The main contributions of
this work are the derivation of lateral chromatic aberration models and their
subsequent parameter estimation techniques. These calibration techniques are
easy to use, based on a single view of a chessboard pattern without any strict
planarity constraints. This fully automated method is presented with full par-
tial derivatives allowing faster and simpler estimation. Compensated images
are formed by re-sampling the originals based on these calibrated models gen-
erating higher quality aberration free images. Model validation is carried out
indicating strong global agreement with detected LCA. The effects of colour
plane correlations are measured and shown to be of negligible magnitude with
respect to the measurement accuracy and the LCA content. Examples on selec-
tions of real images demonstrate the higher quality achievable with such aber-
ration removal. These show that the additional colours that LCA introduces
are removed following compensation with the proposed methods, ultimately
giving superior quality colour images.
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Fig. 6. Test image for Cam 1. Top row shows crop with associated colour histogram
before compensation. Two additional colour paths are formed by the colour fring-
ing between dark and bright regions. Second row shows the corresponding LCA
compensated crop, where the colour fringing has been cancelled.

Fig. 7. Outdoor image for Cam 1. Top row shows crop with associated colour his-
togram before compensation. Additional colour paths are formed by the colour
fringing. Second row shows the corresponding LCA compensated crop, where the
colour fringing has been removed. 16



Fig. 8. Test image for Cam 2. Top row shows crop with associated colour histogram
before compensation. Two additional colour paths are formed by the colour fring-
ing between dark and bright regions. Second row shows the corresponding LCA
compensated crop, where the colour fringing has been cancelled.

Fig. 9. Outdoor image for Cam 2. Top row shows crop with associated colour his-
togram before compensation. Additional colour paths are formed by the colour
fringing. Second row shows the corresponding LCA compensated crop, where the
colour fringing has been removed. 17



Fig. 10. Test image for Cam 3. Top row shows crop with associated colour histogram
before compensation. Two additional colour paths are formed by the colour fring-
ing between dark and bright regions. Second row shows the corresponding LCA
compensated crop, where the colour fringing has been cancelled.

Fig. 11. Outdoor image for Cam 3. Top row shows crop with associated colour
histogram before compensation. Additional colour paths are formed by the colour
fringing. Second row shows the corresponding LCA compensated crop, where the
colour fringing has been removed. 18
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