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Abstract. This paper presents the development of a novel visual speech recognition (VSR) system 
based on a new representation that extends the standard viseme concept (that is referred in this paper to 
as Visual Speech Unit (VSU) and Hidden Markov Models (HMM). The visemes have been regarded as 
the smallest visual speech elements in the visual domain and they have been widely applied to model 
the visual speech, but it is worth noting that they are problematic when applied to the continuous visual 
speech recognition. To circumvent the problems associated with standard visemes, we propose a new 
visual speech representation that includes not only the data associated with the articulation of the 
visemes but also the transitory information between consecutive visemes. To fully evaluate the 
appropriateness of the proposed visual speech representation, in this paper an extensive set of 
experiments have been conducted to analyse the performance of the visual speech units when compared 
with that offered by the standard MPEG-4 visemes. The experimental results indicate that the 
developed VSR application achieved up to 90% correct recognition when the system has been applied 
to the identification of 60 classes of VSUs, while the recognition rate for the standard set of MPEG-4 
visemes was only in the range 62-72%. 
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 1   Introduction 

Automatic Visual Speech Recognition (VSR) plays an important role in the development of many 
multimedia systems such as audio-visual speech recognition [1], human-computer interaction and sign 
language recognition [2]. Visual speech recognition involves the process of interpreting the visual 
information contained in a visual speech sequence in order to extract the information necessary to establish 
communication at perceptual level between humans and computers. The availability of a system that is able 
to interpret the visual speech is opportune since it can improve the overall accuracy of audio or hand 
recognition systems when they are used in noisy environments.   

The task of solving visual speech recognition using computers proved to be more complex than initially 
envisioned. Since the first automatic visual speech recognition system was reported by Petajan [7] in 1984, 
abundant VSR approaches have been reported in the computer vision literature over the last two decades.  
While the systems reported in the literature have been in general concerned with advancing theoretical 
solutions to various subtasks associated with the development of VSR systems, this makes their 
categorization difficult. However, the major trends in the development of VSR can be divided into three 
distinct categories: feature extraction, visual speech representation and classification. In this regard, the 
feature extraction techniques that have been applied in the development of VSR systems can be divided 
into two main categories, shape-based and intensity based. In general, the shape-based feature extraction 
technique attempt to identify the lips in the image based either on geometrical template that encode a 
standard set of mouth shapes [17] or on the application of active contours [3]. Since these approaches 
require extensive training to sample the spectrum of mouth shapes, recently the feature extraction has been 
carried out in the intensity domain. Using this approach, the lips are extracted in each frame based on the 
colour information and the identified image sub-domain detailing the lips is compressed to obtain a low-
dimensional representation [18].  

A detailed review on the research on VSR indicates that numerous methods have been proposed to 
address the problems of feature extraction and visual speech classification, but very limited research has 
been devoted to the identification of the most discriminative visual speech elements that are able to model 
the speech process in the continuous visual domain. Thus, most works on VSR focused on the 



identification of visemes, but the visemes identification in continuous visual speech proved problematic 
since visemes have a limited visual support when analysed for continuous lip motions. Consequently, 
different visemes may overlap in the feature space, a fact that makes their recognition difficult.  

To address the problems associated with the standard viseme recognition approach a new set of visual 
speech elements for VSR system, referred to as Visual Speech Units (VSU), is proposed in this paper. This 
new visual speech representation has been included in the development of a VSR system that consists of 
four major components:  

• Intensity-based lip segmentation. 
• Feature extraction using Expectation Maximization PCA (EM-PCA).  
• Visual Speech Units speech modelling.  
• Visual Speech Units registration and HMM classification.  

The main objective of this paper is to demonstrate that the inclusion of this new visual speech 
representation in the development of VSR leads to improved performance when compared with the 
performance offered by the standard set of MPEG-4 visemes. 

2 Lip segmentation and EM-PCA manifold representation 

2.1 Lip Segmentation 

To enhance the presence of the skin in the image, the pseudo-hue [5] component is calculated from the 
RGB representation for each frame in the video sequence. The region around the lips is extracted by 
applying a histogram-thresholding scheme (the threshold value is adaptively selected as the local minima 
between the first and the second peak of the pseudo-hue histogram). The images resulting from the lip 
segmentation procedure are as shown in Fig. 1. Fig .1(f) is used as input data to generate the manifold 
representation. This will be discussed in the next section. 
 

     
                                                   (a)     (b)             (c)       (d)          (e)           (f) 

Fig. 1. Lip segmentation process. (a) Original RGB image. (b) Pseudo-Hue Component calculated from the RGB image 
shown in (a). (c) Image resulting after thresholding. (d) Image describing the mouth region. (e) ROI extracted from the 
original image (f) ROI normalized to gray-level image for data compression. 

2.2 EM-PCA Manifold Generation 

In order to reduce the dimensionality of the data resulting from the lip segmentation process, data 
compression techniques are applied to extract the lip-features from each frame in the video sequence. To 
achieve this goal, an Expectation-Maximization Principal Component-Analysis (EM-PCA) scheme is 
applied to obtain a compact representation for all images resulting from the lip segmentation procedure [6]. 
The Expectation-Maximization (EM) is a probabilistic framework that is usually applied to learn the 
principal components of a dataset using a space partitioning approach. Its main advantage resides in the fact 
that it does not require to compute the sample covariance matrix as the standard PCA technique and has a 
complexity limited to O(knp) where k is the number of leading eigenvectors to be learned, n is the 
dimension of the unprocessed data and p defines the number of vectors required for training.  

As explained in the previous section, the lips regions are segmented in each frame and the appearance of 
the lips is encoded as a point in a feature space that is obtained by projecting the input data onto the low 
dimensional space generated by the EM-PCA procedure. The feature points obtained after data projection 
on the low-dimensional EM-PCA space are joined by a poly-line by ordering the frames in ascending order 
with respect to time (Fig. 2) to generate the manifold representation.  



 

Fig. 2. EM-PCA manifold representation of the word “Bart”. Each feature point of the manifold is obtained by 
projecting the image data onto the low-dimensional EM-PCA space.  

2.3 Manifold Interpolation 

Since the manifolds encode the appearance of the lips in consecutive frames through image compression, 
the shape of the manifold will be strongly related to the words spoken by the speaker and recorded in the 
input video sequence. Fig. 3(a) illustrates the manifolds calculated for two independent image sequences 
describing the same word. Although the video sequences have been generated by two speakers, it can be 
observed that the shapes of the manifolds are very similar. 

(a) (b)  

Fig. 3. Manifold Representation and Interpolation (a) Manifold Generated from two image sequences of the word 
“hot”. (b) Manifold Interpolation Results. 

While the manifold determined as illustrated in Fig, 3(a) is defined by a discrete number of points that is 
given by the number of frames in the video data, this manifold representation is not convenient to be used 
for classification/recognition purposes since the spoken words may be sampled into a different number of 
frames that may vary when the video data is generated by different speakers. To address this issue, the 
feature points that define the manifold are interpolated using a cubic-spline to obtain a continuous 
representation of the manifold [8]. The manifolds resulting from the interpolation procedure are depicted in 
Fig. 3(b). The main issue related to the identification of the speech elements that define the word manifolds 
is associated with the generation of a visual representation that performs an appropriate phoneme mapping 
in the visual domain. This problem will be addressed in detail the next section of this paper.  



3 Viseme Representation 

3.1 Viseme Background 

The basic unit that describes how speech conveys linguistic information is the phoneme. In visual speech, 
the smallest distinguishable unit in the image domain is called viseme [4, 14]. A viseme can be regarded as 
a cluster of phonemes and a model for English phoneme-to-viseme mapping has been proposed by Pandzic 
and Forchheimer [9]. 

In 1999, Visser et al [10] developed one of the first viseme-based classification systems where a time-
delayed neural network was applied to classify 14 classes of visemes. This work has been further advanced 
by Foo et al [4, 16], where adaptive boosting and HMM classifiers were applied to recognize visual speech 
visemes. Yau et al [11] followed a different approach when they initially examined the recognition of 3 
classes of viseme using motion history image (MHI) segmentation and later they increased the number of 
visemes up to 9 classes. To describe the lip movements in the temporal domain, 2D spatio-temporal 
templates (STT) were augmented with features calculated using the discrete wavelet transform and Zernike 
moments. In their approach HMM classifiers were employed to discriminate between different classes of 
visemes. 

Although there is a reasonably strong consensus about the set of English phonemes, there is less 
unanimity in regard to the selection of the most representative visemes. Since phonemes and visemes 
cannot be mapped directly, the total number of visemes is much lower than the number of standard 
phonemes. In practice, various viseme sets have been proposed with their sizes ranging from 6 [12] to 50 
visemes [13]. Actually this number is by no means the only parameter in assessing the level of 
sophistication of different schemes applied for viseme categorisation. For example, some approaches 
propose small viseme sets based on English consonants, while others propose the use of 6 visemes that are 
obtained by evaluating the discrimination between various mouth shapes (closed, semi-opened and opened 
mouth shapes). This paper adopts the viseme model established for facial animation by an international 
object-based video representation standard known as MPEG-4 [9].  

From this short literature review, it can be concluded that a viseme is defined as the smallest unit that 
can be identified using the visual information from the input video data. Using this concept, the word 
recognition can be approached as a simple time-ordered combination of standard visemes. Although words 
can be theoretically formed by a combination of standard visemes, in practice viseme identification within 
words is problematic since different visemes may overlap in the feature space or they may be distorted by 
the preceding visemes during the continuous speech process. 

3.2 Viseme Representation in the EM-PCA Space 

In order to evaluate the feasibility of the viseme representation when applied to continuous VSR, a set of 
MPEG-4 visemes is extracted from input video sequences associated with different words in our database. 
For instance, frames describing the viseme [b] are extracted from words such as ‘but’, ’boot’, ‘blue’ etc., 
while frames describing viseme [ch] are extracted from words such as ‘chard’, ‘choose’, ‘chocolate’ etc.  

The feature points on the EM-PCA manifold surface describe particular mouth shapes or lip movements 
and they are manually selected to represent visemes from spoken words. Fig. 4 shows the correspondence 
between feature points that form the visemes manifolds and the corresponding images that define visemes 
in the image domain. From this diagram, it can be observed that frames describing standard visemes 
include three independent states. The first state is the initial state of the viseme; the second state describes 
the articulation process and the last state models the mouth actions associated with the relaxed state. These 
frames are projected onto the EM-PCA space and the resulting manifolds are subjected to spline 
interpolation, as illustrated in Fig. 5(a). The feature points for visemes [b], [u:] and [t] are constructed 
from video sequences describing the word ‘boot’ [bu:t]. By analyzing different instances of the same word 
[bu:t], a group of features points for visemes [b], [u:] and [t] is constructed to define each viseme in the 
manifold representation. These feature points are marked with ellipsoids in the EM-PCA space to indicate 
the space covered by particular visemes, see Fig. 5(b). Based on these examples, we can observe that 
visemes are too small entities to fully characterize the entire word information since the transitions between 
visemes are not used in the standard viseme-based speech representation. 



3.3 Viseme Limitations 

As indicated in the previous section, the main shortcoming associated with the viseme representation is 
given by the fact that large parts of the word manifold (i.e. transitions between visemes) are not used in the 
recognition process. This approach is inadequate since the inclusion of more instances of the same viseme 
extracted from different words would necessitate larger regions to describe each viseme in the EM-PCA 
feature space (see Fig. 5b and this will lead to significant overlaps in the feature space describing different 
visemes. This problem can be clearly observed in Fig. 6 where the process of constructing the viseme 
spaces for two different words (‘Bart’ and ‘chard’) is illustrated. As illustrated in Fig. 6, a large region is 
required to describe the viseme [a:] in the feature space of the two different words. Viseme [d] (green) in 
word [cha:d] and viseme [t] (dark green) in word [ba:t] are in the same category of visemes (see Table 1) 
and they also require a large region in the feature space.  

Another limitation of the viseme-based representation resides in the fact that some visemes may be 
severely distorted and even may disappear in the video sequences that describe visually the spoken words. 
For instance, in the manifolds generated for words ‘heart’, ‘hat’, and ‘hot’ the viseme [h] cannot be 
distinguished. 

 

Fig. 4.  EM-PCA points generated by images from the video sequence describing the word [ba:t]. 

(a) (b)  

Fig. 5. Viseme Representation. (a) EM-PCA feature points associated with visemes [b] (blue), [u:] (red) and [t] (cyan) 
in the manifold of the word ‘boot’ [bu:t]. (b) The regions in the feature space for visemes [b], [u:] and [t]. 

 



These limitations indicate that visemes do not map accurately the lip motions and they are subjected to a 
large degree of distortion when evaluated in continuous speech sequences. In conclusion, the viseme model 
is not optimal when applied to continuous visual speech recognition. 

 

Fig. 6. Viseme feature space constructed for two different words. Word “Bart”-viseme [b], [a:] and [t]. Word “chard” – 
visemes [ch], [a:] and [d]. 

4 Visual speech units 

4.1 Visual Speech Units Modelling 

The main aim of this paper is to introduce a new representation called Visual Speech Unit (VSU) that 
includes not only the data associated with the articulation of the visemes but also the transitory information 
between consecutive visemes. Each VSU is manually constructed from the word manifolds and it has three 
distinct states: (a) articulation of the first viseme, (b) transition to the next viseme, (c) articulation of the 
next viseme. The principle behind this new visual speech representation can be observed in Fig.7 where 
prototype examples of VSUs are shown.  

 (a)  (b) (c)  

Fig. 7. Visual Speech Unit Examples. (a) VSU Prototypes: [silence-b], [ä-b] and [ә-b]. (b) VSU Prototypes: [b-a:], [b-i] 
and [b-u:]. (c) VSU Manifold for [silence] to visemes [b], [a:] and [o].  

4.2 Visual Speech Units Training 

As mentioned before, the construction of VSUs is based on adjacent “visible” visemes that can be 
identified in the word manifolds (visible visemes describe the articulation process of lip movements that 
can be mapped in the visual domain). In the manifold representation, the visible visemes are represented as 
a unique region in the EM-PCA feature space. Using this approach, the VSUs associated with word [bu:t] 
are: [silence-b], [b-u:] and [u:-t], they are displayed in Fig. 8 (a). 

To apply the VSU representation to visual speech recognition it is necessary to construct a mean model 
for each class of VSU. To facilitate this process, the interpolated word manifolds are re-sampled uniformly 
into a fixed number of feature-points. In order to generate standard VSUs manifolds for training and 



recognition tasks, the re-sampling procedure will generate a pre-defined number of key-points that are 
equally distanced on the interpolated manifold surface. This re-sampling procedure ensures the 
identification of a standard set of feature key-points as illustrated in Fig. 8 (b).  

Manifolds for each VSU are extracted from different instances of the same word and they are used to 
calculate the mean model. This manual procedure is illustrated in Fig. 8 (c). The VSU mean models are 
used to train the HMM classifiers. In the implementation presented in this paper, to minimize the class 
overlap is has been trained one HMM classifier for each VSU class. 

 (a)  

(b) (c)  

Fig. 8. The VSU Training. (a) Five manifolds of the word [bu:t] (black line),  four visible visemes :[silence] (gray), [b] 
(blue), [u:] (red) and [t] (cyan). (b) The VSU manifolds extracted and re-sampled: [silence - b] (blue), [b-u:] (red), [u:-t] 
(cyan) and [t-silence] (yellow). (c) The mean model for all VSUs are marked in black in the diagram [silence-b] (black 
line), [b-u:] (black circles), [a:-t] (black cross) and [t-silence] (black dot). 

4.3 Registration between VSU and Word Manifolds 

The VSU recognition is viewed as a competitive process where all VSU mean models are registered to the 
interpolated manifold that is calculated from the input video sequence. In this fashion, we attempt to divide 
the word manifold into a number of consecutive sections, where each section is compared against the mean 
models of all VSUs stored in the database. To achieve this, we need to register the VSU mean models with 
the surface of the word manifold. In this work the registration between VSU mean models and the surface 
of the word manifolds is carried out using the Dynamic Time Warping (DTW) algorithm (see Fig. 9). DTW 
is a simple solution that has been commonly used in the development of VSR systems to determine the 
similarity between time series and to find corresponding regions between two time series of different 
lengths [15].  

 

Fig.9. Registration using DTW between the mean model manifold of VSU [silence-ch] (purple) and the word manifold 
[cha:d] (red). 

 



(a) (b)  

(c)  (d)  

Fig. 10. VSU Registration and Classification. (a) The registration of three classes of the VSU Class 1: [silence-b] (red 
line); Class 2: [silence-ch] (purple line); Class 3: [silence-a:] (blue line) to the word manifold (black dotted line). (b) 
Registration between the [silence-a:] VSU mean model and the word manifold. (c) Registration between the [silence-
ch] VSU mean model and the word manifold. (d) Registration between the [silence-b] VSU mean model and the word 
manifold. The [silence-ch] VSU mean model achieved the best matching cost (evaluated using a three-state HMM 
classification). 

The VSU recognition process is implemented as a two-step approach. In the first step we need to register 
the VSU mean models to the word manifold using DTW while in the second step we measure the matching 
cost between the VSU mean models and the registered section of the manifold using HMM classification. 
This procedure is applied for all VSUs contained in the database and the complete registration process of 
the word [cha:t] is illustrated in Fig. 10. 

4.4 HMM Classification 

The lips motions associated with VSUs can be partitioned into three HMM states using one Gaussian 
mixture per state and a diagonal covariance matrix. The first state describes the articulation of the first 
viseme of the VSU. The second state is defined by the transition to the next viseme, while the third state is 
the articulation of the second viseme. Fig. 11 illustrates the partition of the VSU into a sequence of three 
hidden states. 

 

Fig. 11. HMM topology for VSU 

In the implementation we have constructed one HMM classifier for each class of VSU and one HMM 
classifier for each viseme as well. Each trained HMM estimates the likelihood between the registered 
section of the word manifold and the VSU/vieseme mean models stored in the database. The HMM 
classifier that returns the highest likelihood will map the input visual speech to a particular VSU/viseme 
class in the database. 



5 Experimental Results 

For evaluation purposes it has been created a database that is generated by two speakers. This database 
consists of 50 words where each word is spoken 10 times by speaker one and 20 words where each word is 
spoken 6 times by speaker two. In our database we have included simple words such as ‘boat’, ‘heart’, 
‘check’, etc. and more complex words such as ‘banana’, ‘chocolate’, etc. In our study we have conducted 
the experiments to evaluate the recognition rate when 12 classes of visemes (Table 1) and 60 classes of 
VSUs (Table 2) are used as speech elements. 

The experimental tests were divided into two sets.  The first tests were conducted to evaluate the 
classification accuracy when standard MEPG-4 visemes and VSUs are employed as speech elements and 
the number of words in the database is incrementally increased. The classification results for speaker one is 
depicted in Fig. 12(a) and for speaker two are depicted in Fig. 12(b). Based on the experimental results, it is 
noticed that the correct identification of the visemes in the input video sequence drops significantly with 
the increase in the number of words in the database. Conversely, the recognition rate for VSUs suffers a 
minor reduction with the increase in the size of the database. 

Table 1: The set of MPEG-4 visemes 

Viseme Number Phonemes Example Words No. of samples 
1 [b], [p], [m] but, part, mark 300 
2 [s], [z] zard, fast 30 
3 [ch], [dZ] chard, charge 150 
4 [f], [v] fast, hoover 80 
5 [I] beat, heat 130 
6 [A:] but, chard,  250 
7 [e] hat, bet 130 
8 [O] boat, hot 100 
9 [U] hook, choose 80 
10 [t, d] but, bird, 190 
11 [h, k, g] card, hook,  130 
12 [n] banana 20 

Table 2: 60 classes of Visual Speech Units 

VSU Groups NO. of classes VSUs 

Group 1: (Start with [silence]) 9 [silence-b], [silence-ch], [silence-
z], [silence-f], [silence-a:],  
[silence-o], [silence-i:], [silence-e], 
[silence-u:] 

Group 2: (End with [silence]) 16 [a:-silence], [o-silence], [i:-
silence], [u-silence], [k-silence], 
[i:-silence], [ch-silence], [f-
silence], [m-silence], [ing-silence], 
[ë-silence], [p-silence], [et-
silence], [ğ-silence], [s-silence], [ә 
-silence] 

Group 3: (Middle VSU) 35 [b-a:], [b-o:], [b-i:], [b-u:], [b- ә], 
[b-ë], [a:-t], [a:-b], [a:-f], [a:-ğ], 
[a:-ch], [o-b], [o-t], [o-k], [i:-f], [i:-
p], [i:-t], [u:-t], [u:-k], [u:-f], [ë-t], 
[f-ә:],[f-o], [k-m], [f-a:], [w-a:], 
[z-a:], [ә:-t], [ә:-n], [ә:-ch], [n-a:], 
[a:-n], [ch-a:], [ch-u:], [ch-i:] 



(a)  (b)  

Fig. 12. Viseme vs. VSU Classification. (a) Speaker One. (b) Speaker two. 

 

Fig. 13. Visual Speech Unit Classification with respect to the number (2-5) of training examples.  

The aim of the second set of experiments is to evaluate the performance of the VSU recognition with 
respect to the number of samples used to train the HMM classifiers. As expected, the recognition rate is 
higher when the number of samples used in the training stage is increased (see Fig. 13).  

6 Conclusions 

In this paper we have described the development of a VSR system where the main emphasis was placed on 
the evaluation of the discriminative power offered by a new visual speech representation that is referred to 
as a Visual Speech Unit (VSU). The VSU extends the standard viseme concept by including in this new 
representation the transition information between consecutive visemes.  

To evaluate the classification accuracy obtained for the proposed visual speech representation, we have 
constructed 60 classes of VSUs that are generated by two speakers and we quantified their performance 
when compared with that offered by the standard set of MPEG-4 visemes. The experimental results 
presented in this paper indicated that the recognition rate for VSUs is significantly higher than that obtained 
for MPEG-4 visemes.  

In our future studies, we will extend the number of VSU classes and test the developed VSR system on 
larger word databases. Future research will be also concerned with the inclusion of the VSU based visual 
speech recognition in the implementation of a robust sign language gesture recognition system.  
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