

A Visual Programming Environment for Machine Vision
Engineers

Paul F Whelan

Vision Systems Group
School of Electronic Engineering,

Dublin City University,
Dublin 9, Ireland.

Ph: +353 1 700 5489
Fax: +353 1 700 5508

paul.whelan@eeng.dcu.ie

and

Robert Sadleir

Vision Systems Group
School of Electronic Engineering,

Dublin City University,
Dublin 9, Ireland.

Ph: +353 1 700 8592
Fax: +353 1 700 5508
robert.sadleir@dcu.ie

July 2004

A Visual Programming Environment for Machine Vision Engineers

Abstract:

This paper will detail a free image analysis and software development environment

for machine vision application development. The environment provides high-level

access to over 300 image manipulation, processing and analysis algorithms through a

well-defined and easy to use graphical interface. Users can extend the core library

using the developer’s interface via a plug-in which features automatic source code

generation, compilation with full error feedback and dynamic algorithm updates. The

paper will also discuss key issues associated with the environment and outline the

advantages in adopting such a system for machine vision application development.

Keywords: Machine Vision, Image Analysis, Visual Programming, Development

Environment.

Introduction

For many novices to the world of machine vision, the development of automated

vision solutions may seem a relatively easy task as it only requires a computer to

understand basic elements such as shape, colour and texture? Of course this is not the

case. Extracting useful information from images is a difficult task and as such requires

a flexible machine vision application development environment. The visual

programming environment outlined in this paper (called NeatVision) is one such

system (NeatVision, 2004). It aims to provide novice and experienced machine vision

engineer’s with access to a Java based multi-platform development system. The

NeatVision environment provides an intuitive interface which is achieved using a

drag and drop block diagram approach. Each image processing operation is

represented by a graphical block with inputs and outputs that can be interconnected,

edited and deleted as required. NeatVision (Version 2.0) is available free of charge

and can be downloaded directly via the Internet (NeatVision, 2004)

NeatVision: An Interactive Development Environment

NeatVision is just one example of a visual programming development environment

for machine vision, other notable examples include commercial programmes such as

Khoros (Khoros, 2004) and WiT (Wit, 2004). Visual programming involves defining

variables, specifying operations, which are to be performed on these variables and

their derivatives in order to perform a specific task. This is achieved by creating a

structured flow of data using branching, looping and conditional processing.

Traditionally computer programs have been written using textual programming

languages. Quiet often such programmes process data in a complex fashion leading to

a situation whereby the data paths and the overall structure of the program cannot be

easily identified from the textual description. This can make it very difficult to

appreciate the relationship between the source code and the functionality that it

represents. Although the programmer specifies the data flow in a visual program, the

order in which the components execute is defined by the availability of data.

Conditional processing concepts are supported in the visual domain by using

dedicated flow control components. The main disadvantages of existing visual

programming environments includes their cost, lack of cross platform support and the

fact that many of them tend to be focused on image processing rather than image

analysis applications (the latter must be considered a key element of any practical

machine vision application).

Text based programming languages such as MATLAB (Matlab, 2004) can be a

powerful alternative to visual programming. In addition to the disadvantages outlined

with respect to the visual programming languages, text based approaches require the

user to have a higher level of programming skills when compared to visual

programming environments. Text based interactive environments are generally more

suitable to experienced users, in fact experienced users can become frustrated by the

visual programming environment as complex programmes can take longer to develop.

Hence our aim is to produce a suitable environment for those new to machine vision

while retaining the flexibility of program design for the more experienced users.

Based on our review of exiting text and visual programming based machine vision

development environments, the key criteria necessary are outlined below:

• Multi-platform: The development environment must be able to run on a wide

range of computer platforms.

• Focused on machine vision engineering: The environment should contain a

wide range of image processing and analysis techniques necessary to

implement practical machine vision engineering applications.

• Easy to use: It should allow users to concentrate on the design of machine

vision solutions, as opposed to emphasizing the programming task.

• Upgradeable: The environment must contain a mechanism to allow users to

develop custom vision modules.

A visual program can be created by defining input data using the input components,

then implementing the desired algorithm using the processing and flow control

components. The data flow is specified by creating interconnections between the

components. The program can be completed by adding output components to view the

data resulting from the algorithm execution. Details on the design of the NeatVision

development environment appear elsewhere (Whelan and Molloy, 2000).

NeatVisions Graphical User Interface (GUI)

The NeatVision GUI (Figure 1) consists primarily of a workspace where the

processing blocks reside. The processing blocks represent the functionality available

to the user. Support is provided for the positioning of blocks around the workspace,

the creation and registration of interconnections between blocks. The lines connecting

each block represent the path of the data through the system. Some of the blocks can

generate child windows, which can be used for viewing outputs, setting parameters or

selecting areas of interest from an image. If each block is thought of as a function,

then the application can be thought of as a visual programming language. The inputs

to each block correspond to the arguments of a function and the outputs from a block

correspond to the return values. The advantage of this approach is that a block can

return more than one value without the added complexity of using C-style pointers. In

addition, the path of data through a visual program can be dictated using special flow

control components. A visual program can range in complexity from three

components upwards and is limited only by the availability of free memory.

As each block is processed it is highlighted (in green) to illustrate that it is active.

This allows users to see the relevant speeds of each segment of the parallel data

streams within a visual program. This can help identify potential processing

bottlenecks within the workspace allowing for a more efficient balanced design. The

colour coding of the blocks data connection type and its status also aids in the design

process. To aid user operation each data connection has two colour coded properties,

namely the block data type and connection status. NeatVision currently supports eight

data types, i.e. Image (red), Integer / Array data (green), Double precision Floating

point data (blue), Boolean data (orange), String data (pink), Fourier data (light blue),

Coordinate data (purple) and Undefined data (black). The other connection property

relates to its status. There are three main states for a connection, connected (green),

disconnected (red) and disconnected but using default value (orange).

This approach provides a fast and simple alternative to conventional text based

programming, while still providing much of the power and flexibility. The visual

workspace can be compiled and executed as with a conventional programming

language. Errors and warnings are generated depending on the situation. There is

currently support for 13 input graphics file formats and 11 output formats. System

parameters can be adjusted and the system may be reset and executed again until the

desired response is obtained. At any stage blocks may be added or removed from the

system. NeatVision also contains a built in web browser to allow easy access to online

notes and support tools.

Figure 1: Key features of the NeatVision environment.

Design Details

NeatVision is designed to work at two levels. The user level allows the design of

imaging solutions within the visual programming environment using NeatVision's

core set of functions. NeatVision (Version 2.0) contains 300 image manipulation,

processing and analysis functions, ranging from pixel manipulation to colour image

analysis to data visualisation. To aid novice users, a full introductory tutorial and

some sample programmes can be found on the NeatVision website. A brief

description of the main system components is given below:

• Data types: Image, integer, double, string, Boolean, array, medical image

sequences.

• Flow control: Path splitting, feedback, if (else), for loop.

• Utilities: Rotation, pixel manipulation, resize, URL control, additive noise

generators, region of interest, masking operations.

• Arithmetic operators: Add, subtract, multiply, divide, logical operators.

• Histogram: General histogram analysis algorithms, local equalization.

• Image Processing: Look-up tables (LUT), threshold, contrast manipulation.

• Neighborhood based filtering: Lowpass, median, sharpen, DOLPS,

convolution.

• Edge detection: Roberts, Laplacian, Sobel, zero crossing, Canny

• Edge features: Line/arc fitting, edge labelling and linking.

• Analysis: Thinning, binary detection, blob analysis, labelling, shape feature

measures, bounding regions, grey scale corner detectors.

• Clustering: K-means (grey scale and colour), unsupervised colour clustering.

• Image transforms: Hough (line and circle), Medial Axis, DCT,

Cooccurrance, Fourier, distance transforms.

• Morphology: Several morphological operators, including erosion, dilation,

opening, closing, top-hat, hit-and-miss, watershed.

• Colour: Colour space conversion algorithms, RGB, HSI, XYZ, YIQ, Lab.

• 3D Volume: 3D Operators (thinning, Sobel, threshold, labelling), intensity

projections, rendering engine (wire frame, flat, Gouraud, Phong).

• Low Level: Pixel level operators; get pixel value, set pixel value and basic

shape generation.

• String: String operators, object addition, to upper case and to lower case.

• Maths: An extensive range of numerical operators and utilities, including

constants and random number generation.

• JAI Colour: Colour algorithms implemented using JAI (Java Advance

Imaging (JAI, 2003)), operators, processing, filters and edge detectors.

At the more advanced developers level, NeatVision allows experienced machine

vision engineers to develop and integrate their own functionality (Figure 2) through

the development and integration of new image processing/analysis modules. Readers

should refer to the online NeatVision developers guide for more details on developing

and integrating custom machine vision applications (DevGuide, 2004).

 (a) (b)

(c)

Figure 2: NeatVision component development wizard. (a) Select Add New

Component from the popup menu of the user area of the component explorer. (b)

Select component to be added. (c) Define the component skeleton (i.e. the number and

type of inputs and outputs for the associate block). This generates the necessary

component wrapping code.

Sample Applications

NeatVision provides an image analysis software development environment that can

work at several levels. For example, at a relatively low level individual pixels can be

manipulated. Alternatively, NeatVision's built in functionality can be used to generate

solutions to complex machine vision problems. This section outlines two basic sample

applications, beginning with a simple morphological based task.

Figure 3 illustrates how the reconstruction by dilation morphological operator can be

used to remove or detect objects that are touching the binary image border. This

would be typically used in microscopic imaging analysis (such as microstructure or

cell counting applications) whereby we are only interested in objects within the field

of view that do not touch the boundary. Figure 4 illustrates how NeatVision can be

used to isolate defects in the center panel of a crown bottle top. The basic approach

outlined here involves threholding the image prior to removing any isolated pixels.

The largest blob (white connected region) is then isolated prior to erosion to remove

edge artefacts. The convex hulls bay regions are then isolated and eroded (again to

remove unwanted edge artefacts) prior to incorporation into the original image.

 (a) (b) (c)

(d)

Figure 3: Removal of boundary objects using reconstruction by dilation. (a) Original

image. (b) Boundary object removal. (c) Detected boundary objects. (d) Associated

visual workspace.

 (a) (b)

(c)

Figure 4: Bottle top inspection. (a) Input image. (b) Output image in which the

defects are highlighted in white. (c) The NeatVision visual program.

Conclusions

While there is more to the design of a commercial machine vision system than the

algorithmic development process (i.e. sensor, lighting and mechanical interface issues

are equally important design tasks), a tool such as NeatVision has key advantages

during the initial research stages. By using the built in functionality of NeatVision, it

removes the requirement for the design engineer to develop custom code just to

evaluate a potential algorithmic approach. Similarly the open cross-platform

environment presented by this package makes it ideal for the teaching and exchange

of ideas in a machine vision educational setting. The cross-platform nature of

NeatVision is especially convenient in the online educational environment, as it does

not tie the user to a specific computing platform. One of the authors (PFW) has been

successfully using earlier versions of NeatVision since 1995 is such an online

educational role, where it has formed the main design platform for an online

postgraduate and continuing educational programme in machine vision (EE544

(2004), Whelan (1997)).

In summary, NeatVision was designed to allow novice and experienced users to focus

on the machine vision design task rather than concerns about the subtlety of a given

programming language. It allows machine vision engineers to implement their ideas

in a dynamic and straightforward manner. NeatVision standard and developers

versions are freely available via the Internet and are capable of running on a wide

range of computer platforms (e.g. Windows, Solaris, Linux).

References

NeatVision (2004), "NeatVision: Image Analysis and Software Development

Environment", Available (MARCH) http://www.neatvision.com

Khoros (2004), "Khoros: Khoral Research, Inc", Available (MARCH)

http://www.khoral.com

WiT (2004), "WiT: Logical Vision", Available (MARCH)

http://www.logicalvision.com/

Matlab (2004), "MathWorks: Matlab", Available (MARCH)

http://www.mathworks.com/index.shtml

Whelan, P.F. and Molloy, D (2000), "Machine Vision Algorithms in Java: Techniques

and Implementation", Springer-Verlag, London

JAI (2004), "The Java Advanced Imaging (API)", Available (MARCH)

http://java.sun.com/products/java-media/jai

DevGuide (2004), "NeatVision: Developers Guide", Available (MARCH)

http://neatvision.eeng.dcu.ie/developer.html

http://www.mathworks.com/index.shtml
http://www.mathworks.com/index.shtml

EE544 (2004), "EE544: Computer and Machine Vision", Available (MARCH)

http://www.eeng.dcu.ie/courses/post/modules/ee544.html

Whelan, P.F. (1997), "Remote access to continuing engineering education - RACeE",

IEE Engineering Science and Education Journal, 6(5), pp 205-211.

Diagrams

	A Visual Programming Environment for Machine Vision Engineers
	Introduction
	Design Details
	Conclusions
	References
	
	Diagrams

