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Recovering the depth infor-
mation of a scene is one of
the most important tasks

in machine vision. Depth infor-
mation plays a key role in ma-
chine vision and has a strong re-
lationship with the real world in
robotic applications. Three-di-
mensional information can be
obtained in various ways.
Several 3D vision systems have
been developed to solve a spe-
cific task, while others are more
general and, consequently, more
complex. Among other ap-
proaches for 3D recovery, depth
from defocus (DFD) techniques
have recently attracted a great
deal of interest. Originally de-
veloped by Krotkov [3] and
Pentland [4], the DFD method
uses the direct relationship be-
tween the depth, camera para-
meters, and degree of blurring
in several images (in the current
implementation only two are
used). In contrast with other
techniques, such as stereo or
motion parallax where solving
the correspondence between
different features is a major dis-
advantage, depth from defocus
relies only on simple local algo-
rithms; however, these methods

are complementary. Stereo and
motion parallax methods are
used for outdoor scenes where
the depth discontinuities are im-
portant, while DFD performs
better for indoor scenes where
the target is situated nearby.
Another popular method used in
3D estimation is based on trian-
gulation. In terms of precision,
methods based on triangulation
appear to perform better, but
the major drawback is the
amount of computation in-
volved. Some speed improve-
ments have been obtained using
gray or color-coded patterns.
Ideally, the number of indepen-
dent colored stripes should be
large and geometrically very
dense, but in this case, the col-
or-structured pattern is difficult
to manufacture. Also, different
reflection properties of the ob-
ject’s surface can introduce
some errors in 3D estimation
(when the color of the stripe is
the same as the color of the ob-
ject’s surface). An interesting
method to generate a color-
structured pattern is proposed
by Chen et al. [2]. They pro-
posed a method to design a pat-
tern that has strong contrast at

the borders of any two adjacent
stripes. The correlation between
any two segments of a consecu-
tive sequence of light stripes
should be as small as possible to
minimize the mismatch.

This article addresses the im-
plementation of a real-time 3D
sensor based on depth from de-
focusing. As was previously
mentioned, this method re-
quires only two images ac-
quired using different focal set-
tings. This method performs
badly if the scene’s texture
does not provide high frequen-
cies. A practical solution for
this problem is to project a
structured light on the scene. In
this case, the scene will have a
dominant frequency for tex-
ture. Xiong and Shafer [10] pro-
pose a novel approach to deter-
mine dense and accurate depth
estimation based on maximal
resemblance estimation. This
implementation uses a large
bank of filters with a different
window size tuned for all domi-
nant texture frequencies. Using
a large bank of filters makes
this approach unsuitable for re-
al-time implementation.
Subbarao and Surya [7] pro-



posed the Spatial-Domain
Convolution/Deconvolution
Transform (S Transform) to esti-
mate the depth using an analy-
sis in frequency domain. This
implementation does not per-
form as well as those mentioned
previously. Watanabe and
Nayar [9] proposed a small
bank of broadband rational fil-
ters that are able to handle ar-
bitrary textures. This imple-
mentation is simple and per-
forms reasonably well, even
with weak textures. This ap-
proach represents an improve-
ment but still fails when the
scene is textureless. Therefore,
considering the aforementioned
aspects, for this present imple-
mentation, the optimal solution
is using structured (active)
illumination. An important
problem is determining the illu-
mination pattern. Nayar et al.
[6] proposed a method for opti-
mization in the Fourier domain.
The optimal pattern maximizes
the sensitivity of the focus
measure to enhance the high
spatial resolution. Keeping in
mind that the CCD sensor can
be approximated with an array
of square elements (cells), the
optimal pattern is a rectangu-
lar spatial grid (chessboard).
The next step is tuning this fil-
ter with the CCD parameters
(the distance between two ad-
jacent cells). 

The reversed projection blur-
ring (RPB) model, used by

Asada et al.
[1], is a tech-
nique used
by ray-trac-
ing algo-
rithms, gen-
erally in
computer
graphics.
This model
uses photo-
metric prop-
erties of oc-
cluding
edges when
the object’s
surface be-

hind the nearer object is par-
tially observed. Therefore, the
blurring model using convolu-
tion becomes inconsistent
around the occluding edges. To
compensate for this problem,
they use the radiance of the
near and far surfaces, and then
the occluded region is mapped.
In this implementation, the oc-
cluded region is assigned to be
equal to that from a nearer side
of the depth discontinuity; this
assumption is proven to be cor-
rect in most of the situations.

Theoretical Approach 
of DFD

Depth from defocus means 
calculating the depth of the
scene in the image from the de-
gree of image blurring. Let P be a
point that belongs to an object’s
surface and p be the focused
point refracted by the lens. The
relationship between the object
distance u, focal length f, and
image formation distance v is
given by the lens law.

(1)

Figure 1 shows the optical set-
tings and basic image formation
geometry for a convex lens.

If the CCD sensor is not
placed in the focal plane, the
image is distributed over a cir-
cular patch on the sensing ele-
ment. The diameter of the blur

circle d is given by the use of
similar triangles.

(2)

The blurring effect is seen 
as a convolution between the
focused image and blurring
function.

(3)

where I0 is the focused image
and h is the blurring function. 

The blurring function, also
known as the point spread func-
tion (PSF), can be approximated
by the following expression:

(4)

where hp is called the pillbox
function and can be seen as a
cone of light emerging from the
lens with the point of the cone in
focal plane. If the sensor plane is
shifted from the focal plane,
then it cuts the cone in a circle
with the diameter d. 

If, within this circle, the bright-
ness is not uniform, the PSF is
better approximated by a 2D
Gaussian function (Pentland [4]).

(5)

where σ is the standard devia-
tion of the distribution of the 2D
Gaussian.

In practice, we can assume
that the brightness is constant
over a region of the image pro-
jected onto CCD element, then
the result is an invariant shift
from the focal plane. The blur-
ring is better modeled by the 2D
Gaussian than the blur circle
(another advantage is that the
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1.  Camera geometry and image formation.

P: Object point

p: Image point

I1: Image plane for camera 1

I2: Image plane for camera 2

If: Image in focal plane

D: Aperture of lens

f: Focal length

s: Sensor distance (camera 1)

u: Object distance

v: Focal distance
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Fourier transform of a Gaussian
is also a Gaussian). If the bright-
ness is uniform over a small re-
gion of the image (this assump-
tion approximates the practical
case very well), σ is proportional
to d.

(6)

where k is a constant of propor-
tionality characteristic for
every camera and can be deter-
mined from a previous camera
calibration.

Unless we know a priori in-
formation about the scene, one
image is not enough to estimate
the depth [see Eq. (2) where d
and u are unknown]. Therefore,
a minimum of two images ac-
quired with different camera
settings are necessary. Clearly,
there are two distinct options:
either the aperture D is main-
tained constant and the sensor
position s is modified [6], or the
sensor is fixed and the aperture
is changing when the images
are taken [3,7]. The first case
has an important advantage be-
cause it does not require any
user intervention while the im-
ages are acquired, but unfortu-
nately, different magnification
is caused by focusing. An effec-
tive solution was proposed by
Watanabe and Nayar [9] by us-
ing telecentric lens. They sug-
gest an optical solution to ob-
tain constant magnification. It
is well known that when using
telecentric optics the magnifica-
tion remains constant despite
the focus changes. Most of the
popular commercial lenses can
be transformed to telecentric
only by adding a small, extra
aperture. The aperture will be
placed in the front focal plane
of the lens. Using telecentric
lens, they demonstrate that the
magnification changes can be
reduced to as low as 0.03%.
Because the aperture has to be
small, the only drawback of this
approach is the severe reduc-
tion in brightness. Therefore, to
compensate for this, a brighter

source of illumination has to be
used. The second possible im-
plementation is not hampered
by this issue, but the depth esti-
mation is by far not as precise. 

Estimating Depth 
of the Scene

Depth information can be es-
timated by taking a small num-
ber of images under different
camera or optical settings.
Because the PSF is a circularly
symmetrical function, the rela-
tionship between the focused
and defocused images is illus-
trated by the next expression
(Subbarao and Surya [7]). 

(7)

where f is the focused image, g
is the defocused image, σ is the
standard deviation for PSF and
σ2, the Laplacian operator.
Equation (7) represents the de-
convolution formula. If two im-
ages g1 and g2 are taken under
different camera settings and
the term f (x,y) from the first
equation is replaced in the sec-
ond equation, the result is a sim-
ple expression.

(8)

From Eq. (8), it can be ob-
served that no terms depend on
the scene’s texture frequency.
Furthermore, the depth can be
estimated using the difference
between the standard deviation
of the near-focused image (g1)
and far-focused image (g2). The
use of the Laplacian as a focus
operator is very convenient be-
cause it has a simple kernel,
but the depth map resulting
from Eq. (8) is accurate only if
the depth discontinuities in the
scene are important. Also, if
the scene has only a weak tex-

ture, the depth estimation is
poor. Certainly, to obtain a
dense and robust depth map, a
more sophisticated approach
for modeling PSF has to be 
developed. 

Nevertheless, the focus opera-
tor plays an important role in
the depth estimation stage.
Therefore, the goal of this arti-
cle is to study the accuracy of
depth estimation when used by
different operators. 
Because the defocus function
(PSF) acts like a low-pass filter,
the focus operator has to per-
form inverse filtering. The next
step is determining depth from
two images. The simplest solu-
tion is to use the ratio between
the defocus function of the near
and far-focused images. Nayar
et al. [6] proposed a normalized
ratio M/P that is a monotonic
and bounded function.

(9)

where H is the Fourier trans-
form of the PSF and σ1 is the
standard deviation of the near-
focused image (σ2 is the stan-
dard deviation for the far-fo-
cused image). 

Active Illumination
If the scene is highly tex-

tured, the depth estimation will
be precise and reliable.
Unfortunately, if the scene has
a weak texture or is textureless
(like a blank sheet of plain pa-
per), the depth recovery is far
from accurate. An effective and
relatively simple solution is
based on the use of structured
(active) light. Initially, the solu-
tion (suggested by Pentland et
al. [5] and later Nayar et al. [6])
was to develop a symmetrical
pattern as a rectangular spatial
grid optimized for a specific
type of camera. Therefore, the
illumination pattern has a sin-
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gle, dominant frequency in di-
rect correlation with the pat-
tern’s arrangement for trans-
parent and opaque regions.
When the structured light is
projected onto the scene, the
spectrum will have the same
dominant frequency. 

The resulting pattern is very
dense and rotational symmetri-
cal to obtain spatial invariance.
A problem caused by using a
dense spatial pattern is the re-
duction in illumination caused
by the filter’s opaque regions,
thus a very powerful source of
light is required. Nevertheless,
a very precise pattern is diffi-
cult to fabricate, and our testing
concluded that this issue is not
as restrictive as it seems. For
the current implementation, a
simple stripes grid (10 lines/mm)
used in Moire contour detection
was used. 

Focus Operator
The goal of this operator is

determining the defocus func-
tion (σ) by inverse filtering near
and far-focused images. Our ef-
forts in this article were concen-
trated in evaluating the efficien-
cy of different focus operators.
Because the blur circle is only
uniform for small regions, the
kernel of the focus operator has
to be small to preserve locality,
but on the other hand, the win-

dowing introduces
supplementary er-
rors. Xiong and
Shafer [11] pro-
posed a solution to
select the window
size for Gabor fil-

ters. They
used a simple
criterion
when the win-
dow size is se-
lected to be as
small as possi-
ble, while the
error caused
by noise and
windowing is
smaller than a
pre-set value.

Aside from window size, every
focus operator must be rotation-
ally symmetric and must not re-
spond to any DC component (a
DC component can mean a
change in image brightness).
This condition is satisfied if the
sum of all elements of the focus
operator is equal to zero. 

Watanabe and Nayar [8] sug-
gested an approach based on
the use of rational filters. They
proposed a method to compute a
set of broadband rational opera-
tors. The first operator performs
prefiltering (for removing DC
components) and then another
three operators are involved in
depth estimation. Finally, the
depth errors caused by spurious
frequencies are minimized by
applying a smoothing operator. 

This article investigates the
performance of Laplacian (4
and 8 neighborhood) and ratio-
nal operators (3 3 3 and 7 3 7
kernels). The 3 3 3 operators
are shown in Figure 2 and fol-
lowed by the 7 3 7 operator in
Figure 3.

Because the image is discrete,
the focus operator will intro-
duce errors (apart from those
caused by windowing).
Furthermore, supplementary er-
rors are caused by misalignment
between the cells of the CCD
sensor and illumination pattern.
To minimize the abovemen-

tioned problems, a post-filtering
operator is used after the focus
operator is applied to near and
far-focused images.

Physical Implementation
The main goal of this imple-

mentation is to build a real-time
depth estimator. Thus, the near
and far-focused images have to
be acquired in the same time.
For this purpose, two OFG
VISIONplus-AT framegrabbers
were used. The scene is imaged
using an AF MICRO NIKKOR 60
mm F 2.8 (Nikon). A 22 mm beam
splitter cube is placed between
the NIKKOR lens and the sens-
ing equipment (CCD sensors).
Then, the near and far-focused
images are acquired using two
low-cost 256 3 256 CCD sensors,
VVL 1011C, from VLSI Vision
Ltd. (Nashua, NH). These sensors
are precisely placed to ensure
that one will acquire the near or
far-focused images. The physical
displacement between these sen-
sors is approximately 0.8 mm. 

The structured light is project-
ed onto the scene using an MP-
1000 Moire projector with MGP-
10 Moire gratings (stripes grid
with density of 10 lines/mm). The
lens attached to the projector is
the same type used to image the
scene. All sensing equipment re-
quired by this implementation is
low cost, and furthermore, the
calibration procedure is relative-
ly simple. The set up involved in
this present implementation is
described in Figure 4.

When the images are ac-
quired, a few operations are
necessary to determine the
scene’s depth map. For the
sake of computation efficiency,
the depth is estimated directly
from g1 and g2 using a precom-
puted look-up table. This func-
tion is not bounded, but this is
not a major drawback. A sim-
ple solution of avoiding the
case when g2 is equal with zero
is to add a small constant value
to g1 and g2. As we mentioned
before, this function can be
evaluated using the ratio (g1-g2)
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0 -1 0 -1 -1 -1 0.55 -1 0.55
-1 4 -1 -1 8 -1 -1 1.8 -1
0 -1 0 -1 -1 -1 0.55 -1 0.55

(a) (b) (c)

2.  Focus operator kernels:  (a) Laplacian (4), (b)
Laplacian (8), and (c) rational operator (3 3 3).

-0.143 0.1986 -0.1056 -0.07133 -0.1056 -0.1986 -0.143

-0.1986 -0.1927 0.01795 0.07296 0.01795 -0.1927 -0.1986

-0.1056 0.01795 0.2843 0.4601 0.2843 0.01795 -0.1056

-0.07133 0.07296 0.4601 0.6449 0.4601 0.07296 -0.07133

-0.1056 0.01795 0.2843 0.4601 0.2843 0.01795 -0.1056

-0.1986 -0.1927 0.01795 0.07296 0.01795 -0.1927 -0.1986

-0.143 -0.1986 -0.1056 -0.07133 -0.1056 -0.1986 -0.143

3.  Focus operator kernel of a rational operator (7 3 7).



/ (g1+g2). The defocus function
(Figure 5) is bounded in this
case, but for this implementa-
tion, while the depth is investi-
gated within a small range (0-9
cm), it was proven not to be
sensitive enough. The flow-
chart illustrated in Figure 6 de-
scribes the main operations.
The implementation presented
in the figure computes the
depth map (256 3 256) in ap-
proximately 95 ms on a
Pentium 133 MHz (the time re-
quired by graphical interface is
not included).

Camera Calibration
A calibration procedure is

proposed that contains two im-
portant stages. The first stage is
obtaining a precise alignment
between the near and far-fo-
cused CCD sensors, while the
second stage carries out a pixel-
by-pixel gain calibration. To ob-

tain a precise spatial alignment
between the CCD sensors, we
propose a gray-level rectangular
grid pattern as a calibration
pattern. This pattern is illus-
trated in Figure 7. The pixel-by-
pixel gain calibration is applied
to compensate for the offset and
errors caused by the optical and
sensing equipment.

Experiments and Results
To verify the efficiency of this

range sensor, it was tested on
several indoor scenes. First, this
sensor was tested on simple tar-
gets such as planar surfaces, then
on scenes with a complex sce-
nario. Figure 8 shows the depth
recovery for two planar objects
situated at different distances in
front of the sensor.

Figure 9 shows the depth map
for a slanted planar object, and
Figure 10 shows a more complex
scene containing LEGO® objects
with different shapes and a large
scale of colors.

The accuracy is estimated
when the sensor is placed at a
distance of 86 cm from the base-
line of the workspace. For these
scenes, the lowest accuracy is
3.4% normalized in agreement
with the distance from the sen-
sor. This accuracy is reported
for both textured and texture-
less nonspecular objects. We
tried to identify an optimal ker-
nel for the focus operator. As
was mentioned earlier, four fo-
cus operators were used. The
best results, with respect to the
gain, were obtained for a 7 3 7
rational operator, but the depth
estimation is not very linear.
The results were more linear
when the Laplacian (4) and the
3 3 3 rational were used as a fo-
cus operator, but the disconti-
nuities in depth were not as
well recovered. A trade-off be-
tween gain and linearity was
given by Laplacian (8).

Conclusion
This article presented the im-

plementation of a real-time
depth sensor. In comparison to

stereo technique, the DFD
method does not suffer from
the correspondence problem.
Furthermore, the DFD ap-
proach is not affected by occlu-
sion or missing parts; it can
therefore be used as a ranging
method for various applica-
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5.  Defocus function.

7.  Calibration pattern.

Framegrabber Framegrabber 

Near-focused image Far-focused image

Focus operator Focus operator 

6.  Data flow during the computa-
tion process.

Smoothing operator Smoothing operator

Look-up table

Smoothing

3D Structure

g1 g2

Max/Min

`

g1

g1

g1

g1

4.  3D sensor and its principal com-
ponents.

Light projector

Camera 2

Camera 1

Beam splitter 



tions. The con-
sistency be-
tween theory
and experi-
mental results
has indicated
that our imple-
mentation is
an attractive
solution to esti-
mate the depth
quickly and ac-
curately. 

In contrast
to other imple-
mentations
based on defo-
cusing where
the depth
range is rela-
tively large,
we proposed a
solution to es-
timate depth
within a small
range (be-
tween 0-9 cm).
Furthermore,
this present

approach has another advan-
tage over other implementa-
tions suggested by Pentland et
al. [5] and Nayar et al. [6] be-
cause it does not contain any
sensitive equipment to move-
ments or vibrations; therefore,
it can easily be involved in ro-
botics applications. 

Because DFD methods per-
form poorly for textureless ob-
jects, the active illumination
was identified as being the key
issue for this implementation.
The depth estimation can be
further improved by using a
camera with higher resolution
and redesigning the illumina-
tion pattern and focus operator. 
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9.  Near and far-focused images and depth recovery for a
scene containing a slanted planar object.

10.  Near and far-focused images and depth recovery for a
scene containing various LEGO® objects.

8.  Near and far-focused image and depth estimation 
for two planar objects situated at a different distance
from sensor.


